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Rotatory strengths for the d-d transitions of trigonally distorted six-coordinate complexes of Co3+ and Cr3+ with N and 0 
donor atoms are calculated on a molecular orbital model. The electronic states of spectroscopic interest are constructed 
from molecular orbitals calculated on a modified Wolfsberg-Helmholz model. Calculations are carried out on ML, (M = 
metal atom, L = donor or ligator atom) clusters in which either the nuclear geometry of ML, has D, point group symme- 
try or the ligator donor orbitals are trigonally disposed about the metal atom. That is, chirality is introduced into the ML, 
cluster either by a Piper representation (trigonal nuclear geometry) or by a Liehr representation (ligand donor orbitals 
canted from the M-L axes in an octahedral ML, cluster). Additional calculations are carried out in which both a trigonally 
distorted ML, cluster and canted donor orbitals are present simultaneously. Rotatory strengths are calculated as functions 
of several stereochemical and electronic structural variables which are related to the chirality of D, complexes. The re- 
sults suggest that neither the Piper molecular orbital model nor the Liehr model provides an adequate representation of the 
source of d-d optical activity in trigonal dihedral metal complexes. These molecular orbital models do, however, provide 
a means of deducing qualitative information about the sensitivity of d-d rotatory strengths to distortions within the ML, 
cluster. 

I. Introduction 

metry have played a prominent role as model systems in 
both experimental and theoretical investigations of natural 
optical activity. The first purely theoretical examination 
of the origin of optical activity in tris(bidentate 1igand)metal 
complexes was made by Kuhn and Bein.*’ Their treat- 
ment of these systems was based on the general coupled- 
oscillator model of molecular optical activity proposed by 
Kuhn.6-8 Selecting the tris complexes C ~ ( e n ) ~ ~ +  and 
C O ( O X ) ~ ~ -  as model systems, Kuhn and Bein postulated 
that electronic transitions localized on the metal ion gained 
optical activity by coupling with electric dipole oscillators 
localized on the three bidentate ligands. More specifically, 
they represented the optical electron on the metal ion as an 
isotropic harmonic oscillator with a given frequency (say, 
VM) and the ligands by three linear oscillators of frequency 
V L  (VL > V M )  directed along the edges of the octahedron 
spanned by the chelate rings. On this model, the spatial 
arrangement of the three ligand oscillators is dissymmetric 
and their coupled motions give rise to a dissymmetric force 
field. If the metal ion oscillator is, in turn, coupled to the 
ligand oscillators via this dissymmetric force field, then 
optical activity will be observed at the frequencies of the 
perturbed metal oscillator (i.e., in the metal ion absorption 
bands near vM), as well as at the frequencies of the per- 
turbed ligand oscillators ( i e . ,  in the ligand absorption bands 
near uL). 

oscillator model, applied to the optical activity of d-d tran- 
sitions in metal complexes, have been discussed in some de- 
tail and need not be rediscovered here. Re- 

Transition metal complexes of trigonal dihedral (D3) sym- 

The limitations and shortcomings of Kuhn’s coupled- 
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cently, Mason, Bosnich, Hawkins, and Ferguson and their 
coworkers have developed the quantum mechanical analog 
to Kuhn’s classical coupled-oscillator model and have applied 
this theory with considerable success to the circular di- 
chroism (CD) spectra associated with the ligand-ligand 
transitions in tris and bis complexes of bidentate ligands 
which have moderately intense absorption bands in the 
near-ultraviole t spectrum.’ 3-23 However, Kuhn’s coupled- 
oscillator model has, for the most part, been abandoned in 
current treatments of the optical activity manifested by the 
d-d and metal-ligand charge-transfer transitions in metal 
complexes. 

MoffittZ4 introduced the first quantum mechanical theory 
of optical activity in chiral transition metal complexes. He 
adopted a crystal field model on which to represent the 
spectroscopic states of the metal ion d electrons and used 
the “one-electron’’ theory of optical activity proposed by 
Condon, Altar, and Eyring2s to develop expressions for the 
rotatory strengths of the metal d-d transitions. An error 
in sign in the d-d transition matrix of the angular momentum 
operator led Moffitt to incorrect conclusions, and SuganoZ6 
subsequently demonstrated that Moffitt’s model could not 
account for the net optical activity observed for the ‘Alg + 
‘TI, transition in trigonal dihedral complexes of Co(II1) 
and for the 4A2, + 4T2g transition in Cr(II1) complexes of 
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trigonal dihedral symmetry. However, Moffitt’s work pro- 
vided an important stimulus for much of the subsequent 
theoretical effort given to this s u b j e ~ t . ~ ~ - ~ l  

has served as the basis for several additional theoretical 
studies on the optical activity of d-d transitions in metal 
complexes.27-29~36~38-41 When this perturbation model is 
developed to second-order in the dissymmetric parts of the 
crystal field potential, it is found that a net rotatory strength 
is associated with d-d transitions which are degenerate in the 
zeroth-order cubic r e p r e ~ e n t a t i o n , ~ ~ ’ ~ ~ - ~ ’  in agreement with 
experimental observations. Furthermore, this model has 
provided the basis for a set of sector (or regional) rules which 
have proved to be of some value in relating the stereochemi- 
cal variables of metal complexes to the signs and magnitudes of 
of CD bands.39-42 

The crystal field one-electron model admits only static 
coupling between the ground state, static charge distribu- 
tions located in the perturbing ligand environment, and a 
chromophoric electron localized on the metal ion. Re- 
cently, Mason3’ and Richardson4’ have employed a more 
general perturbation model for interpreting the optical ac- 
tivity of transition metal complexes. The model they 
adopted is basically identical with that developed by 
T i n ~ c o ~ ~  in 1962 and, more recently, applied to organic 
systems by Hohn and Weigang.& It can be characterized 
as an independent-systems model insofar as the metal com- 
plex is partitioned into a number of separate groups (metal 
ion and ligand groups) and it is assumed that the electronic 
distributions of the individual groups do not overlap. To 
zeroth-order, it is further assumed that the electronic prop- 
erties of each group can be approximated by considering 
the group to be isolated from the rest of the system. In- 
teractions between groups are then treated by perturbation 
theory. It should be obvious that the crystal field one- 
electron model is subsumed by this general perturbation 
model. Both “one-electron’’ and “two-electron’’ terms a- 
rise in the general theory. The “one-electron’’ terms are 
so called because they involve the dynamic behavior of only 
one electron; the remaining charges in the system are as- 
sumed to provide an average or static field in which the 
“one-electron’’ must move. The “two-electron’’ terms 
originate with the coupled motions of two electrons, each 
localized in a separate group. For the d-d transitions of 
chiral metal complexes, the pairwise dynamic couplings be- 
tween electrons in the ligand environment and the chromo- 

The crystal field one-electron model (or “ionic” model) 

R. W. Strickland and F. s. Richardson 

phoric d electron can provide significant contributions to 
the total d-d rotatory ~ t r e n g t h . ~ * * ~ ’ ~ ~ ~  

ligand field transitions of dissymmetric tris-bidentate and 
cis bis-bidentate complexes of d3 and low-spin d6 metal 
ions. Although this approach appears to have considera- 
ble merit for representing the essential aspects of the optical 
activity problem, a detailed account of its applications has 
not yet been given. 

The first theoretical studies of optical activity in metal 
complexes to employ a molecular orbital representation of 
the spectroscopic states were reported by Liehr34935 and by 
Karipedes and Piper.3’ In the latter study, the molecular 
orbitals were constructed in the LCAO approximation, the 
ligand orbital basis set was restricted to the 2s and 2po 
atomic orbitals on the six ligator (donor) atoms, and the 
3d and 4p orbitals of the metal ion were included. Metal- 
ligand T bonding was neglected. On this molecular orbital 
model, optical activity is generated by a trigonal distortion 
of the ML6 o-bonded structure; that is, the ligating atoms 
are displaced from the vertices of a regular octahedron and 
the resultant ML6 cluster has trigonal dihedral (D3)  sym- 
metry. 

Distortions of ML6 from an octahedral to a trigonal ge- 
ometry may be characterized in terms of the polar angles 
B L  and azimuthal angles QL of each ligator atom as meas- 
ured with respect to a trigonal coordinate system centered 
on M (with the 2 axis coincident with the C3 axis of the 
distorted ML6 cluster).39 For tris-bidentate complexes in 
which the two ligator atoms of a single ligand are designated 
L and L ’ (but are chemically identical), trigonal distortions 
are conveniently expressed in terms of azimuthal twists 
about the C3 axis and polar elongation (or compression) of 
the complex along the C3 axis. For an octahedral arrange- 
ment o f  the ML6 cluster, the dihedral angle, w = QL - QL ’, 
between each pair of donor atoms. L and L‘, in the chelate 
system is 60”. Azimuthal twist operations lead to values of 
w f 60”. The four kinds of trigonal distortions involving 
both polar elongation (or compression) and azimuthal 
twist operations are listed as follows: (1) polar elonga- 
tion-azimuthal expansion (w > 60”), (2) polar compression- 
azimuthal contraction (w < 60”), ( 3 )  polar elongation- 
azimuthal contraction, and (4) polar compression-azimuthal 
expansion. These distortions of the ML6 cluster in tris- 
(symmetric bidentate ligand) complexes are depicted in 
Figure 1. The tris(oxa1ate) and tris(ethy1enediamine) com- 
plexes of Co(II1) are examples of systems in which the ML6 
cluster suffers polar compression-azimuthal contraction 
(at least in crystalline media).47-50 The tris(ma1onate) com- 
plex of Cr(II1) in crystalline form reveals a polar elonga- 
tion-azimuthal expansion of the Cr06 ~luster . ’~ In Co- 
  OX)^^-. w = 54.0”; in Cr(mal)33-, o = 60.6”.51 The tris- 
(trimethylenediamine) complex of Co(II1) also suffers 
polar elongation-azimuthal expansion in its crystalline 

S ~ h a f f e r ~ ~  has applied the angular overlap to the 
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a, 
Azimuthal Contraction 

b. 
Azimuthal Expansion 

C. 
Polar Compression 

rl 
U. 

Polar Elongation 

Figure 1. Trigonal distortion operations on the ML, cluster of a 
tris(bidentate 1igand)metal complex with D(A) absolute configura- 
tion. 

form.52 However, Butler and Snows3 have suggested that, 
in solution, C ~ ( t n ) ~ ~ +  may exist in forms in which the angles 
w are contracted from 60" and the complex is compressed 
along the trigonal axis. The various structural forms of 
C ~ ( t n ) ~ ~ +  are attributed to the several possible conforma- 
tions which each six-membered chelate ring may adopt. 

by Karipedes and Piper3' is that the net rotatory strength 
associated with the lowest lying cubic transition in tris-bi- 
dentate Cr(II1) and tris-bidentate Co(II1) complexes changes 
sign as the dihedral angle w changes from less than 60" to 
greater than 60". Since the chiral distribution of the che- 
late rings about the C3 axis is neglected on this model, no 
optical activity, of course, is predicted for w = 60". On 
this model, it is predicted that the net rotatory strengths 
will be of opposite sign for two complexes which have 
identical absolute configurations with respect to their che- 
late ring distributions but which suffer azimuthal twist dis- 
tortions of opposite senses (Le., o < 60" for one and w > 
60" for the other) in the ML6 cluster. For example, the 
sign of the net CD observed for the 'Al, + ITlg transition 
of tris-bidentate Co(II1) complexes depends upon whether 
w is greater than or less than 60" rather than upon the 
absolute configuration of the three bidentate ligands about 
the Co(II1) ion. To calculate the correct sign for the net 
rotatory strength of h(+)-C~(en),~', Karipedes and Piper 
had to assume an expansion of the N-Co-N bond angle 
from 90" and a twist angle w > 60". In the crystal, LN- 
Co-N = 85.3" and w = 54.9" for A ( + ) - C O ( ~ ~ ) , ~ ' . ~ ~  Al- 
though these results suggest that the Piper model yields in- 
correct absolute signs for the net rotatory strength, several 
recent studies on other systems tend to support the validity 
and qualitative accuracy of its  prediction^.'^'^^ 

Liehr constructed molecular orbital models for the optical 

A salient feature of the molecular orbital model presented 
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activity of both six-coordinate complexes of trigonal dihe- 
dral symmetry34 and four-coordinate complexes of digonal 
dihedral 
is a significant angle of "mis-match" between the directions 
of maximum charge density for the metal d orbitals and the 
donor orbitals of the ligating atoms. In the trigonal dihe- 
dral systems, the ligating atoms are situated at their octa- 
hedral positions but the ligator atom u orbitals are canted 
with respect to the metal-ligator internuclear axis. This 
angle of cant (denoted as a) is sensitive to the detailed struc- 
tural features of the chelate rings and all dissymmetry in 
the complex is communicated to the metal ion via this 
deviation of each primary metal-ligator linkage from axial 
symmetry (about the M-L direction). In this treatment the 
rotatory strength turns out to be proportional to sin a. 

Liehr did not carry out detailed computations based on 
his model and the conceptual basis of the model is not 
easily transformed into working hypotheses which can be 
tested by experiment. Piper and Karipedess5 calculated 
the dipole strengths of the C ~ ( e n ) ~ ~ ' '  system using Liehr's 
bent-bond model and concluded that it underestimates 
the electric dipole transition integrals by at least an order 
of magnitude. However, it is a fair statement that Liehr's 
model has not yet been adequately tested. 

Most of the experimental CD data obtained on the d-d 
transitions of metal complexes with trigonal dihedral sym- 
metry presently are interpreted in terms of Piper's molecu- 
lar orbital model, Mason's semiempirical method for relating 
the sign of the doubly degenerate long-wavelength transition 
to absolute configuration, or the sector (regional) rules de- 
veloped on the basis of the one-electron static coupling and 
two-electron dynamical coupling models. Presumably, 
Piper's model is useful for relating the spectroscopic ob- 
servables to distortions within the ML6 cluster, and the 
sector rules are applicable for obtaining information about 
stereochemical features of the ligand environment beyond 
the ML6 cluster. For most systems, it is quite probable 
that both ML6 distortions and the nonligating parts of the 
ligand environment will contribute to the net optical ac- 
tivity of the complex. Unfortunately, a unified theory in 
which these contributions are treated simultaneously does 
not exist. The independent-systems theory, which includes 
both the one-electron static coupling model and the two- 
electron dynamical coupling model, cannot deal appropri- 
ately with atoms attached directly to the chromophoric site 
(the metal ion), and a molecular orbital model which encom- 
passes the entire complex is unsuitable from a computa- 
tional quantum chemical point of view. 

The primary purpose of the present study was to  refine and 
extend Piper's molecular orbital model so that the current 
controversies provoked by the predictions of his model could 
be placed in sharper focus. Although our computational 
methods are somewhat more refined than those of Karipedes 
and Piper and we extend the calculations to include a larger 
number of structural variables (e.g., n bonding, various donor 
atoms and metal ions, etc.), our computational model is too 
crude to permit more than qualitative or semiquantitative 
conclusions. For purposes of comparison we also carried 
out several calculations based essentially on Liehr's model. 
That is, we allowed for displacement of the ligands from the 
octahedral axes and for canting of the ligand po orbital with 
respect to the metal-ligand bond axes. In real systems these 
two types of distortion can occur simultaneously. 

The essential feature of Liehr's model 

(55) T. S .  Piper and A. G. Karipedes, Inorg. Chem., 4, 923  
(1965). 
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11. Model 

We assume a six-coordinate metal complex in which six 
identical ligand atoms are coordinated to a central transi- 
tion metal ion. We adopt an octahedral reference geome- 
try for the ML6 cluster and describe all other geometries of 
ML6 in terms of distortions from this O h  reference config 
uration. In this study we are, of course, principally in- 
terested in the trigonally distorted forms of ML6 which 
have exact trigonal dihedral (D3)  symmetry. For this rea- 
son, it is convenient to express the positions of the ligand 
atoms in terms of a trigonal coordinate system with its ori- 
gin at the metal atom and one of its axes coincident with a 
C3 axis of the ?v1L6 octahedron. With respect to the cubic 
coordinate system (X,, Yo,  2,) shown in Figure 2 ,  the 2 
axis of the trigonal coordinate system (X, Y ,  2) points along 
the (1 11) direction and the X axis is in the plane formed 
by a ligand-metal axis and the 2 axis. Specification of (X, 
Y ,  Z) as a right-handed, orthogonal coordinate system fixes 
Y .  

Trigonal distortions of the ML6 cluster from regular octa- 
hedral symmetry are expressed in terms of two angular 
variables: u = distortion angle measuring polar compression 
(a < 0) or polar elongation (u > 0") of the ML6 cluster 
along the C3 (Z) axis; 6 = distortion angle measuring 
azimuthal twist about the C3 (2) axis (see Figure 3). For 
a twist operation in which the upper triad of ligand atoms in 
Figure 3 is rotated counterclockwise (CCW) about the C3 
axis (viewed from the positive 2 direction) and the lower 
triad is rotated clockwise (CW) by the same amount, 6 > 
0". If the directions of rotation of the two triads are re- 
versed, then 6 < 0". A trigonal twist operation of either 
sense (6 > 0' or 6 < 0') results in a total change in dihedral 
angle of Aw = 126 I for each of the ligand pairs, (1,l  '), (2,2') 
and (3,3 '). In a polar elongation of ML6, the polar angles 
of ligands 1, 2, and 3 are less than the octahedral value of 
54.74' (i.e., OL < 54.74"), and the polar angles of ligands 
1 I ,  2', and 3 are greater than the octahedral value of 
125.26" (Le., OL' > 125.26'). For a polar compression, 
eL > 54.74' and OL' < 125.26'. 

In addition to the metal-centered coordinate system, six 
ligand-centered coordinate systems were required in order 
to define the ligand atomic orbitals. The localized ligand 
coordinate systems are shown in Figure 2. Note that the 
z axes of the localized ligand systems all point directly to- 
ward the metal atom. The metal-ligand u bonds are de- 
fined to have cylindrical symmetry about these axes, in 
accordance with the earlier molecular orbital model of 
Karipedes and Piper3' but differing from the model pro- 
posed by Liehr.34 

Calculations on the model of Karipedes and Piper are 
made by deleting the ligand pn atomic orbitals from the 
basis set. Canting of the ligand pu orbital, Liehr's model, 
is accomplished by expressing the canted orbital as a linear 
combination of the ligand p,, py , and pz orbitals. First 
the p, and py orbitals are rotated counterclockwise (see 
Figure 2) about the metal-ligand internuclear axis through 
an angle X. The angle of cant, a, is defined in the figure 

A. Molecular Orbital Calculation. 1 .  General Procedure. 

R. W. Strickland and F. S .  Richardson 

w 

Figure 2. Cubic coordinate system (.Yo, Yo, 2,) centered on the 
metal atom and the local ligand coordinate systems. 

Figure 3. Definitions of distortion angles u and 6 .  The trigonal 
coordinate system is denoted by ( X t ,  Yt, 2,) and the angle y is 
54.74". 

Having specified 01, the canted pu orbital is given by 

po = pz COS a + 2-"* (p, ' + py ') sin a 
where the primes on p, and py denote rotation through 
h. For a planar ligand in a complex with A configuration, 
A = 45'. (For the A configuration, h = -45".) The flexi- 
bility of the model allows us to treat the so-called "lel" and 
"ob" isomers of C~(en),~'. ' For the A configuration the 
"lel" isomer would have A = 60°, while for the "ob" isomer, 
A = 30'. 

The atomic orbital (AO) basis for the molecular orbital 
(MO) calculation consisted of the 4s, 4p, and double-< 3d 
metal orbitals and the 2s (or 3s) and 2p (or 3p) orbitals on 
each ligand atom. The 3d, 4s, and 4p basis orbitals on the 
metal ion, expressed in terms of both octahedral and trig 
onal coordinates, are listed in Table I along with the ir- 
reducible representations (IR) for which they form bases 
in the Oh and D3 point groups. In Table I1 are listed the 
ligand symmetry orbitals, chosen to transform as bases for 
IR's in both Oh and D3 and expressed in terms of the six 
localized ligand coordinate systems shown in Figure 2. 

Wolf~berg-Helmholz~~ or extended Hucke15' treatment. 
In this method we first solve the equation 

The molecular orbitals are obtained by use of a modified 

det(H, - eS,) = 0 (1) 

(56) M. Wolfsberg and L. Helmholz, J.  Chem. Phys., 20,  837 

(57) R.  Hoffman, J .  Chem. Phys., 39,  1397 ( 1 9 6 3 ) ; 4 0 , 2 4 7 4 ,  
(1 95 2).  

2480,  2745 (1964) .  
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Irreducible 
Basis representations Symmetry orbitals 

functions Oh D3 Octahedral Trigonal 

for the energies e and then find the coefficients Cmi  for the 
molecular orbitals 

where the @ j  are the atomic orbitals in our basis set. 

matrix is computed and diagonalized to obtain S-l”. From 
input populations of the various orbitals, the free ion VOIP 
are computed according to the procedure formulated by 
Anno and SakaLS8 Next the crystal field terms are added 
to the metal ion VOIP to obtain the metal diagonal elements 
of the Hamiltonian matrix.59 The metal-metal part of the 
Hamiltonian matrix (H) is comprised entirely of crystal 
field (CF) terms. The negatives of the VOIP are used for 
the ligand diagonal elements of H and a Wolfsberg-Helmholz 
(W-H) procedure is employed in determining the ligand- 
ligand off-diagonal elements. The metal-ligand off-diagonal 
elements of H are also computed by a W-H procedure in 
which different parameters are used to distinguish between 
u- and n-type interactions. 

The eigenvalue equation to solve is IH - eSI = 0. In the 
ZDO approximation, the usual procedure is to find the i? 
verse of S and operate on the eigenvalue equation to obtain 
IS-lH - el = 0. Then S-’H is diagonalized to obtain the 
eigenvalues and eigenvectors. However, except fgr special 
cases, S-’ H is not symmetric and the usual diagonalization 
subroutines cannot be used. To circumvent this problem 
we first find H ’  = S-’/ZHS-1/2 a nd then diagonalize H ’  to 
obtain e = D-’ [S-’/2HS-’/2]D. The eigenvectors are then 
given by C = S - l l 2 D .  Having obtained the eigenvectors 
we than compute orbital population by Mulliken’s method.60 
From the normalization condition 

The calculation proceeds as follows. First the overlap 

(3 )  

The population of atomic orbital i is defined as CmjZjCmjSj j  
for the mth molecular orbital. For N filled molecular 
orbitals, the population of atomic orbital i is given by 
2 Z , = , N C m i Z j C m j S j j .  If Pi‘ is the input population of 
orbital i and Pi“ is the output population, then we define 
an average population, Pi = (1 - h)Pi‘ + Pi”, and use this 
value as input for the next recalculation of the Hamiltonian 
matrix. This procedure is done iteratively until self-con- 
sistency is achieved. The constant, A, is introduced as a 
damping factor to avoid extreme oscillations in the calcu- 
lations. When at least three iterations have been made, an 

( 5 8 )  T. Anno and Y. Sakai, J. Chem. Phys., 5 6 , 9 2 2  (1972).  
(59) R. F. Fenske, K. G. Caulton, D. D. Radtke, and C. C. 

(60) R.  S. Mulliken,J. Ghem. Pkys., 23, 1833 (1955).  
Sweeney, Inorg. Chem., 5,  951  (1966).  

extrapolation procedure61 is used to approximate the self- 
consistant populations. After the kth iteration has taken 
place, the extrapolated population of the ith atomic orbital 
to be used in the ( k  + 1)th cycle is obtained from 
pi(k+l )  =p. (k)  - fik)(A.(k) + 6 ,(k))/( TW) + W(W) 

where 
(4) 

Ai(k) = (pi(k) -pj(k-1))2/(pj(k) - ~ p ~ ( k - 1 )  +pi(k-2)) 

W(k) = ZA.(k)  
i J  

i 
T(k) = ZIAi(k)l 

6i(k) = - lA.(k)IW(k)/T(k) 

In performing the calculations we fixed the ligand VOIP at 
the free-ion values. Generally, self-consistency for the or- 
bital populations is reached in six or seven iterations. 

2. Overlap Matrix. We afix a minimum valence basis set 
of Slater-type atomic orbitals (STO) to each ligand such that 
the local 2 axis on each ligand points toward the metal ion. 
The atomic orbitals on the metal ion are quantized about 
the C3 axis which is collinear with the reference coordinate 
Z axis. The overlap integrals between metal and ligand or- 
bitals are computed from formulas given by Lofthus6’ while 
ligand-ligand overlaps are calculated from formulas due to 
Mulliken, et ~ 1 . ~ ~  In both cases we calculate the overlaps 
for a “local diatomic” system at the appropriate distance 
and project them onto the molecular system. The latter 
is accomplished by means of a unitary transformation ma- 
trix derived from the Euler angles relating the molecular 
system to the “local diatomic” system. 

3. Hamiltonian Matrix, The diagonal terms of the 
Hamiltonian matrix may be shown59 to have the form 

Hii = -VOIP(j) + VCF(j) 

where VCF(j) is the crystal field potential arising from the 
molecular core screened by its ground state distribution of 
valence electrons. The appropriate VOIP for a given or- 
bital depends upon the ground-state populations of all 
valence orbitals located on the same nucleus. 

gerade and ungerade parts 

(5) 

We partition the trigonal (D3)  crystal field potential into 

VCF = vg + v u  ( 6 )  
where 

(61) W. Yeakel, Ph.D. Dissertation, University o f  Wisconsin, 

(62) A. Lofthus,Mol. Phys., 5,  1 0 5  (1962).  
(63) R. S .  Mulliken, C. A. Rieke, D. Orloff, and H.  Orloff. 

1972. 

J. Chem. Phys., 17, 1248 (1949). 
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Table 11. Ligand Symmetry Orbitals Expressed in Terms of Local 
Lieand Coordinate Svstems 

sin3 O L  cos 3$L (7) 
and 

V, =-rzYzo E QL[6RL-’ + 3RL-3(4.rr/5)1/2(3 cos2 
6 

L = l  

BL - l)] -r4Y40(~/4)1’2ZQLRL-2(35 cos4 OL - 

30 COS’ OL + 3) - v ~ ( Y ~ - ~  - Y,3)(35n)1’2CQLRL-4 x 
L 

L 

sin3 eL COS eL (8) 
where the spherical harmonic functions Ylm depend upon 
electron coordinates and are centered on the metal atom, 
O L  and $L refer to ligand positions as shown in Figure 2, 
and QL is the charge on ligand L. Formulas for the non- 
zero CF matrix elements are given in Table 111. 

The diagonal ligand CF matrix elements are computed as 

VcF(ligand L) = -QMRL-l -QL L f L  E ,RL,L!-l (9) 

where QM is the ground-state charge on the metal. In de- 
riving this expression we have neglected the spatial extent 
of the ligand orbitals. However, since our principal interest 
lies predominantly with metal-metal transitions, this neglect 
should have little effect on our results. 

The off-diagonal H matrix elements between metal or- 
bitals consist entirely of crystal field terms. By symmetry 
V,  will mix 3d and 4s orbitals with 4p orbitals, while V, 
will mix the 3d and 4p orbitals among themselves. The 
nontrivial matrix elements are given in Table 111. In eval- 
uating the CF matrix elements we require values for the 

(R3dlr31R4,), and (R,,k21R4,). These are calculated by 
means of the formulas in Table IV. Here Rh is the nor- 
malized radial portion of the atomic orbital of type k. 

off-diagonal H matrix elements by a modified Wolfsberg- 
Helmholz procedure. The general expression for these 
matrix elements is 

radial terms: (R3d b“IR3d), (R3dlr4 IR3d), (R3d lY2 IR4&, 

We choose to calculate the metal-ligand and ligand-ligand 

Hij = FS,,(VOIP, + VOIP,)/2 (10) 
where F is a parameter which may assume different values 
depending on whether the overlap is ligand-ligand, ligand- 
metal u type, or ligand-metal 71 type. In our calculations 
we use F values reported by Basch, Viste, and Gray.64 We 
take the arithmetic mean of the VOIP rather than the diag- 
onal matrix elements since the latter contain crystal field 
terms. Berthier, et  aZ.,6’ have shown that when the 
Wolfsberg-Helmholz procedure is used, an adjustment must 
be made for a change in the zero point of energy. This 
adjustment is avoided by using VOIP since the values of F 
that we use were optimized in calculations using VOIP as 
the diagonal elements of the H matrix. 

B. Excited States. The virtual orbital approximation 
is used in constructing the excited states. F o r m  filled 
MO’s in the ground state, the ground-state wave function 
is taken to be the Slater determinant 

90 = 1$1(1)?1(2)&(3). . .Gm(2m)I (1 1) 
where a bar denotes an electron with f l  spin and the absence 

(64) H. Basch, A. Viste, and H. B. Gray, J.  Chem. Phys., 44, 

(65)  G. Berthier, G. Del Re, and A. Veillard, Nuovo Cimento 
10 (1966). 

B, 44, 3 1 5  (1966). 

Irreducible 
Linear combinations of 

ligand AO’sa 
Symmetry representations 

orbitals Oh D, 
XI 

xz 

x 3  

x 4  

x5 

x 7  

x 6  

XS 

x 9  

X I 0  

XI 1 

XlZ 

X I 3  

x14 

X I  5 

x16 

X I 7  

X18 

X I 9  

x z o  

XZl 

x z z  

x’23 

x 2 4  

(1/6)1’2(Z, + Z, + Z, + 
(1/6)”’(S, + S, + S ,  + 

Z,’ + Z,’ + Z,? 

Slt + S,! + S,? 
-(l/12)1TZ1 + z, - 

22, + Z,‘ + Z,l - 22,’) 
-(1/12)”2(S, t s, - 2s, + 

SI!  + S,‘ - 2S,’) 
(1/2)(Z1 - z, + z,, - Z,’) 
(1/2)(S1 - s, + SIC - S,? 

2Y, - x, + Y, + XI’  + 
2Y,’ - 2X,‘ - Y,!  + x,, - 
y, ’) 

Y, + X,’ + Y2f - X,’ - 
y3 ’) 

(1/12)”2(X1 -Y, + x, - 
Y, t x, -Y, - X 1 ’  + 
Yi8 - X,’ + Y,’  - X,l + 
y, 9 

2Y, - x, - Y, - X,’ + 
2Y1‘ + 2X,‘ - Y,t - x,t - 
y, *) 

Y, + X,l - Y,’ - x,t + 
y, 9 

(1/12)1/2(X1 + Y ,  + x, + 
Y, + x, + Y, + X I ’  + 
Y,, + X,’ + Y,’ t X,! + 
y, 9 

-(1/12)”2(Z, + z, - 22, - 
z,t - z,, + 22,’) 

-(1/12)1ys,  + s, - 2s, - 
S,f - s,r + 2s,9 

2x, + Y, t x, t Y, + 
2X,! - Yll - X,t + 2Y,f - 
x,, - Y,,) 

(li2)(Z1 - z, - Z,’ + 2,’) 
(l/2)(Sl - s, -SI, + S,? 

Y, -- Y,t + X,’ - X3l t 
y, 9 

Z,t - Z,r - Z,’) 

sl, - s,, - S,!)  
(1/12)”2(X1 + Y l  + x, + 

Y , + X , + Y , - X , ~ -  
YIJ  - x,, - Y,’ - x,, - 
y39 

2x, -Y, J. x, -Y, - 
2x13 -- Xll + X,I + 2Y,I + 
x,, - Y,t) 

Y , - Y , ~ - X , ~ + X , ~ +  
y, 9 

(1 /12)1yx1 -Y, + x, - 
Y, + x, -Y, + X I ! -  
Y,, + X,! -Y,, + X,’ - 
y3 9 

(1/24)1’2(2X, + Y, - X, - 

(1/8)1”(Y1 + X, - X, - 

(1/24)’”(2X, - Y, - X, + 

-(1/8)’”(Y1 - X, + X, - 

-(1/24)1’2(X, - 2Y, - 

-(1/8)1’2(X1 -Y, - X, + 

(1/6)1’2(Z1 t Z, + Z, - 

(1/6)”*(S, + S, + S, - 

-(1/24)1’2(X, + 2Yi - 

(1/8)1’2(X1 + Y, - X, - 

a The 2s, 2p,, 2p,, and 2p, atomic orbitals located at ligand site 
h (=l, 2, 3, l‘, 2’, or 3’)  are denoted by SA, Xh, Yh. and Zh, re- 
spectively. 

of a bar denotes LY spin. The Slater determinant corre- 
sponding to the excitation of an electron from the kth to 
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Table 111. Crystal Field Matrix Elementsa 

A. Diagonal Terms 
(3d,z lV13dzz) =-Q{6/R + (6/7R3)(3 COS' 0 - 1)(R3dk21R3d) + (3/ 

(3d,,lV13dX,)=-Q{6/R + (3/7R3)(3 cos' e - 1)(R3dlrzIR3d)- ( I /  

(3d,z_yzl~13d,z-y~) =-Q{6/R - (6/7R3)(3 cos' 0 - 1) X 

(3dy,lV13d,,) = (3d,,lVI3dx2) 
(3d,ylV13d,y) = (3dxz-,2 lV13dxz-yz) 

14R5)(35 COS4 0 - 30 COS' 0 + 3)(R3dk4 IR3,.$} 

7R5)(35 COS4 0 - 30 COS' 0 + 3)(R,dlP iR,d)} 

(R3dlr' lR3d + (1/28R5)(35 COS4 0 - 30 COSz 0 +3)(R3dk4iR3d} 

(4sl V14$ = -061R - - - I  

(4p,lVI4px) = (4p,IV14py) =-Q{6/R - (3/5R3)(3 cos' e - 1) X 

(4p,lV14p,) =-Q{6/R + (6/5R3)(3 cos' e - l)(R4plr'~R4p)} 
(R,plrz IR4p)} 

€3. Off-Diagonal Terms 
(3d,,lV13d,~-y~) =-Q{ (5 /2R5)  sin3 0 COS O(R3dk41R d)} 
(3d221V14s) = -Q{(3/5'/'R4)(3 COS' 0 - 1)(R3dlr'lR45$ 

6 
(3dxylV14p,) = Q{(5/7)'/'(3/4R4) sin3 0 (R3dlr31R )Ccos 3&} 

4 P l k l  

(3dXZ-yZ I V14px) = -(3d,,l V14py) 

Q In atomic units. (RilrnIRi) is a radial integal (see Table IV). 
a In atomic units. (RilrniRj) is a radical integral (see Table IV).  

The variables R, e,  and @ refer to ligand positions with respect to 
the trigonal metal coordinate system (see Figure 3). 

Table IV. Formulas for the One-Center Radial Integralsa 

(R&R ) = [(2n + 1)!/(2n)!(fns + fnp)I[4fnsrnp/(fns + 
fn p) '1 ;+% 2 

~)""lsl)"Pls,' + c2~~,/~,~"'~s4/s,~"' /~"1 

(R,p~rZ IR4p) = 22.5/fqP2 
(R,dirnlR,s(4 $bsC = [(7 t ~)! /2n(6!8! )"] [CltSl /~)n~'~S4/  

(R,dl?'nlR3d)b*d = [(6 + n)!/(6!2")][C, '/fin f cz2/fzn + 
2C,C2(f1b2/52)7/2/~~l  

f4s(4p))/2, r, = (S, + f4s(,p))/2. d c= (f' + f2)/2. 
a In atomic units. b R3d = C,R3d(fI) + C,R3d(S2). C = (ti + 

the Zth molecular orbital (a virtual orbital) is given by 

*k+l = 1$1(1)$1(2)* .$k(2k- 1)&(2k)* *&n(2m)l (12) 

A given excited-state wave function will be a linear combi- 
nation of these Slater determinants 

In our calculations we consider only single electron excita- 
tions so that the ground-state wave function is simply \ko. 

In order to determine the coefficients p k , l  we employ 
a configuration interaction scheme in which the requisite 
electron repulsion integrals over atomic orbitals are approxi- 
mated by the CNDO method. Although this procedure is 
rather crude for determining energies, it does provide state 
wave functions of the correct symmetry which we need in 
calculating the state transition moments. 

C. Transition Integrals. 1.  Dipole Length Matrix Ele- 
ments. For a transition from the ground state, *,,, to an 
excited state, qa, the electric dipole transition moment along 
one of the Cartesian axes is 

where 
sum may be expressed in terms of atomic orbitals, &, as 

= ix + j y  + kz .  The matrix elements in the above 

In our calculations we neglect the two-center transition 
integrals over atomic orbitals. Previous calculations have 
shown that the contribution made by the two-center terms 
to the total transition moment is small enough to leave our 
conclusions unchanged. The one-center electric dipole 
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Table V. One-Center Electric Dipole Transition Integralsa 

a In units of -ih (Xi, Y1,Zl) is the position of ligand 1 with 
respect to  the trigonal metal coordinate system. See Figure 3. 

where F = (Sns + Snp)/2. 

transition integrals are given in Table V. In evaluating these 
integrals we require values for the radial integrals: (R3d I Y I  
R4p) and (RnsIrlRnp), where iz = 2 , 3 ,  or 4. These integrals 
are computed from the formulas in Table IV. 

The ligand-ligand transition moments are projected onto 
the metal's coordinate system by means of the transforma- 
tion matrices discussed earlier. The projected moments 
are subsequently used in evaluating the state transition 
moments via eq 14 and 15. 

2. Angular Momentum Matrix Elements. The angular 
momentum matrix elements are treated in the same fashion 
as the dipole length matrix elements. The angular momen- 
tum about the 4 axis for a transition from the ground state, 
q0, to an excited state, qa, is given by 

c W=@sia/aqlnp,)= ( ~ ~ ~ f ~ ~ ) ~ + ~ / ~ [ ( n  + i ) / n -  s n p / ~ ] / 3 1 / 2 ~ - 2 n ,  

where q = x, y ,  or z .  The total angular momentum opera- 
tor, in the units -&, is 

a a  a a  
a Z  ay ax az 

A n A  

L = r  X A=i[y--z-] +j[z--x-] + 
a a A  n 

ay ax k[x--y-] = iL, +jL, + k i ,  

Table VI contains the pertinent angular momentum integrals 
in terms of atomic orbitals. 

As was done with the dipole length matrix elements, we 
retain only the single-center terms in our calculations. The 
contributions made by the ligands to the total angular 
momentum are projected onto the coordinate system for 
the metal atom. This is accomplished in two steps. First 
we construct a coordinate system on the ligand that is par- 
allel to that on the metal and project the angular momentum 
operator about this new ligand system onto the coordinate 
system centered on the metal atom. The projected opera- 
tors are 

A h  a 

A A  a a L ,  = L,! + X L - 7  - Y,? aY ax 
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Table VII. Computational Parameters 
COO, CON, CrO, CrN, 

C, 0.5980 0.5980 0.5460 0.5460 
C, 0.5260 0.5260 0.5821 0.5821 
tl 5.50 5.50 4.95 4.95 
f z  2.50 2.50 2.20 2.20 
f 1.60 1.60 1.30 1.30 

4pb f 1.45 1.45 1.48 1.48 
f 2.2458 1.9237 2.2458 1.9237 

Ligand {ire f 2.2266 1.917 2.2266 1.917 
R,d A 1.925e 2.000f 1.9608 2.075h 
Fai 1.70 1.60 1.70 1.60 

R'sd = clR,d(fl) + C,R,d(f,).66a Reference 66b. Refer- 
ence 67. d Metal-ligand bond distance. e Reference 47. f Refer- 
ence 49. g Reference 68. h Reference 69. i Reference 64. 

QL -0.3 0.0 -0.4 0.0 

R. W. Strickland and F. S.  Richardson 

A A 

where L,  is the projected operator, L,! is the angular mo- 
mentum about the q ' axis located on the ligand, and paral- 
lel to the metal q axis, and (XL, YL, 2,) is the ligand posi- 
tion with respect to the metal atom's coordinate system. 
The effect of projecting the angular momentum operator 
is to give rise to nonzero angular momentdm contributions 
from ligand s with ligand p orbitals. These additional 
matrix elements are also given in Table VI. The second 
step consists of transforming from the parallel coordinate 
system on the ligand to the original ligand coordinate ligand 
system ( i e . ,  the one about which the ligand atomic orbitals 
are quantized). This transformation is accomplished by 
the matrix method discussed earlier. Thus all of the angular 
momentum matrix elements appearing in the right-hand 
side of eq 16 are calculated with the metal atom at the 
origin. 

D. Rotatory Strengths. The rotatory strength for a 
transition from the ground state, \ko, to an excited state, 
\k4, is given by 

Ro = Im[(\ko i$*a).(\kaIl;li\k~)] (19)  
where Im means that the imaginary part of the expression 
is taken. The electric and magnetic dipole moment opera. 
tors are defined respectively as 

and 

where the sums extend over all electrons. Typical magni- 
tudes of R for the d-d transitions in dissymmetric metal 
complexes are cgsu. Instead of dealing with such 
small numbers, we shall find it convenient to report our 
results in terms of reduced rotatory strengths. The reduced 
rotatory strength of a transition 0 + a  is defined as 

[Roes] = (lOO/PD) Im[(\ko l~W4)~(\k41~l*o)] = 

where 0 is the Bohr magneton and D is the Debye unit (lo-'* 
esu cm). 

E. Structure Variables and Computational Parameters. 
In Table VI1 are listed the computational parameters and 
metal-ligand bond distances employed in the present study 
for various complex ions?7i49@966-69 Metal-ligand bond 

1.08 X 104'R0 j4(cgsu) ( 2 2 )  

(66) (a) J .  W. Richardson, W. C. Nieuwpoort, R. R. Powell, and 

(67) E. Clementi and D. L. Raimondi, J. Chem. Phys., 38, 

W. F. Edgell, J .  Chem. Phys., 36, 1057 (1962); (b) J.  W. Richardson, 
R. R. Powell, and W. C. Nieuwpoort, ibid., 38, 796 (1963). 

3686 (1963). 

1 i 
I I 

Figure 4. [ R ]  vs. u at 6 = 3' for Co11106 ; net value of [ R  ] and 
component values of [ R ]  . 

Figure 5. [ R ]  Ps. u for 6 = 3 and 1.5" for CoIIP06; net value of [ R ]  
(solid lines). F vs. u for 6 = 3" (broken line). F = -XLYLZL. 
(XL' - YL')(YL' -ZL')(ZL' - XL') ,  (XL,  YL, Z L )  = Cartesian 
positional coordinates of ligating atoms (0) referred to cubic coor- 
dinate system of Figure 2. 

distance is held cdnstant for all calculations carried out on 
a particular biL6 cluster. The distortion angles, 6 and u, 
are treated as ihdependent variables and the reduced rota- 
tory strength and trigonal splitting energy are the dependent 
variables in the calculations. The results reported in this 
paper were obtained with just one set of W-H parameters, 
Fa, F,, fi ,  for each complex ion studied. Although a 
thorough sensitivity analysis was not performed, the depend- 
ent variables of this study were not sensitive to 20-30% 
changes in the W-H parameters. Furthermore, they were 
insensitive to ligand charge parameters, QL,  over a range of 
values considered reasonable for these quantities. Only 
one set of VOIP were calculateds8 and only one set of radial 
functions were used for both the 
basis orbitals. Although the absolute magnitudes of the 

and the ligand67 

(68) J. N. van Niekerk and F. R. L. Schoening, Acta Crystallogr., 
5 ,  499 (1952). 

(69) K. N. Raymond, P.  W. R. Corfield, and J .  A. Ibers, Inorg. 
Chem., 7 ,  1362 (1968). 
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- 2- 
-I-\ Do '4 

Figure 6. [R] vs. 6 for u = 3, 0, and -6' for Co11106; net value of 
[RI.  

y- 
l! 

0.5 
[Rl 

-x E(T2j 

Figure 7. [R] vs. u at  6 = 3' for Cr11106 ; net value of 
component values of [R] . 

- 
~ - - - . . 

R ]  and 

Figure 8. [R] vs. u at  S = 3" for CoIIIN6, u and n bonding; net 
value of [R] and component values of [R] . 

computed rotatory strengths most certainly are sensitive to 
these computational parameters, it is doubtful that the 
qualitative and semiquantitative relationships between 
rotatory strength and the chiral distortion variables will be 
fundamentally altered. 
111. Results 

The principal results of this study are presented in Figures 
4-1 1. In Figures 4-8, the reduced rotatory strengths com- 
puted on our extended version of Piper's model are plotted 
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Figure 9. [R] vs. u at 6 = 3" for Co111N6, 71 bonding suppressed; 
net value of [R] and component values of [R] . 

- 1.01 

Figure 10. [R] vs. oi at (I = 0" and S = 0" for CoIIIN6, canted 
ligand orbitals. For "ob" isomer, h = 30" (A configuration). For 
''lel" isomer, h = 60' (A configuration). 
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more subtle, and both positive and negative values of u are 
represented in the figures. 

lated on Piper's original model vs. u for a CoIIlN6 cluster. 
Figure 10 contains similar results calculated on Liehr's 
molecular orbital model. As stated earlier, Liehr's model 
allows for precessing of the ligand pa orbital about the 
metal-ligand internuclear axis and in Figure 10 we have 
tailored the model to correspond to the "lel" and "ob" 
conformers of n - C ~ ( e n ) ~ ~ + .  Combining Piper's and Liehr's 
models leads to the results depicted in Figure 11. Again 
these results are designed to correspond to the "lel" and 
"ob" conformers of A-c~(en),~'.  

The net rotatory strength for a given structure is just the 
algebraic sum of all one-electron d-d rotatory strengths. 
Each of our chiral Co(II1) species has trigonal dihedral (D3) 
symmetry so that only three nonvanishing component 
rotatory strengths are calculated. These correspond to the 
transitions 'AI(Al) -+ 'Az(T1), 'A1(A1) -+ 'E(T1), and 
'A1(A1) -+ 'E(T2), where the symbols in parentheses refer 
to the octahedral parent states (with parity and spin multi- 
plicity suppressed). The trigonal transition, 'A1(A1) -f 
'A1(Tz), is forbidden in both magnetic dipole and electric 
dipole radiation and is, therefore, optically inactive. Each 
of our chiral Cr(II1) species has trigonal dihedral (D3)  sym- 
metry so, again, only three nonvanishing component rota- 
tory strengths are calculated. These correspond to the 
following s in allowed transitions: 4A2(A2) -+ 4A1(T2), 

In Figure 9 are presented reduced rotatory strengths calcu- 

4A2(A2) -+ 1 -  E(T,), and 4A2(A2) -f 4E(T1). 
In all of our calculations on CoIIIO6 and on CrIIIO, we 

included both u- and Ti-bonding interactions between metal 
and ligand. Furthermore, we assumed isotropic ~i bonding 
insofar as the local 2p, and 2p, ligand atomic orbitals were 
treated identically. In a real system such as tris(oxa1ato)- 
cobalt(II1) one might expect some anisotropy among the 
ligand Ti-bonding orbitals in the plane perpendicular to the 
metal-ligand internuclear axis due to the influence of chelate 
ring atoms. On our model, these possible anisotropies are 
neglected. We performed four sets of calculations on the 
CoIIIN, species. In one set both u- and n-bonding interac- 
tions were included while in another set ~i bonding was 
suppressed by restricting the ligand atomic orbital basis 
to 2s and 2p, functions. From a comparison of the results 
displayed in Figures 8 and 9, it is readily apparent that ~i 

bonding between the metal ion and the ligator atoms has a 
pronounced influence on the d-d rotatory strengths. The 
remaining sets of calculations on the CoIIIN6 cluster in- 
volve a canted pu orbital on each ligator atom. As shown 
in section 11, the canted pu orbital may be decomposed 
into u- and Ti-bonding p orbitals. Nevertheless we consider 
these calculations to correspond to a 0-bonding complex 
since there is only one ligator atom p orbital available for 
bonding. Canting of the pu orbital is included to simulate 
the directional effects of the nonligating atoms on the 
ligand pu orbital. 

The trigonal field splitting energies calculated as a func- 
tion of distortion angle u are plotted in Figure 12 for CoIII- 
06, CrIII06, and CoIIIN, (n bonding suppressed) at a con- 
stant value of 6 = 3". In Figure 13, the trigonal field 
splitting energy in C0IIIO6, u = O", is plotted PS. the dis- 
tortion angle 6 .  If the doubly degenerate trigonal compo- 
nent is of lower energy than the nondegenerate trigonal 
component, the trigonal splitting energy, v ,  is positive. 
That is v (cm-') = [€(a) - e(e)]/hc, where e(a) and e(e) are 
the computed energies of the nondegenerate and degenerate 
trigonal components, respectively. 

R. W. Strickland and F. S .  Richardson 

Figure 12. Trigonal field splitting energy, u (cm-'), YS. u: 
. CrIIIO 

Co111N6, 6 = 3", n bonding suppressed, .- .- (-. 
= 30 - - - - ~ ~ - - - - - _ .  C0"'O6, s = 3", 6 3  

1500 - 
7HCn-i') 

1000 - 

Figure 13. Trigonal field splitting energy, v (cm-'), vs. 6 for 
CoIII06 at u = 0". 

IV. Discussion 
The linear dependence of net d-d rotatory strengths on 

the degree of twist about the trigonal axis of ML6 clusters 
is a consequence of the model adopted in this study. Simi- 
lar behavior is found for the trigonal components of the 
d-d transitions in trigonally distorted Coo6, C r 0 6 ,  CoN6, 
and CrN6. Even if the ligand pn orbitals are excluded 
(Piper's model), this behavior still obtains. For this reason 
we need present calculations for only a single value of 6 
in the linear region since the properties of structures with 
different degrees of azimuthal distortion can be obtained 
by interpolation or extrapolation. 

From a comparison of Figures 4 ,7 ,  and 8 with Figure 9 
it is readily apparent that n bonding between the metal ion 
and the ligator atoms has a pronounced influence on the 
d-d rotatory strengths. The most striking feature is that 
the signs of the rotatory strengths of the lowest energy d-d 
transitions change upon inclusion of the ligand pn orbitals 
for u > -3". Karipedes and Piper3' suggested that ~ i -  

bonding contributions to the electric dipole transition 
moments would be opposite in sign to those expected of 
the o-bond contributions for d-d transitions, but they 
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further argued that the r-bonding contributions could be 
neglected for C ~ ( e n ) ~ ~ + .  

With regard to C ~ ( e n ) ~ ~ + ,  the reduced rotatory strengths 
calculated for the d-d transitions on Piper’s model do not 
agree in relative magnitude with those obtained from the 
experimental CD spectra. In crystalline form the CoN6 
cluster of C ~ ( e n ) ~ ~ +  suffers an azimuthal contraction and 
a polar c o m p r e ~ s i o n . ~ ~  It may be conjectured that in 
solution the polar distortion in C ~ ( e n ) ~ ~ +  is relaxed with 
the result that the ratio of the E to A2 rotatory strengths 
increases (Figure 9). Woldbye” and have 
argued that the shape of the solution CD spectrum of 
C ~ ( e n ) ~ ~ +  may be interpreted on the basis of an equilibrium 
mixture of isomeric structures formed by the various com- 
binations of chelate ring and 6 conformers. This argu- 
ment rests on the assumption that the chiroptical properties 
of the (666) ,  ( M A ) ,  (EXX), and (XU) structures of a given 
configurational isomer (A or A) are sufficiently different 
that the experimental CD spectra will be sensitive to their 
relative concentrations in solution. 

Unless the positions of the ligator atoms are altered on 
going from one chelate ring conformer to another, Piper’s 
model predicts that the d-d rotatory strengths will be in- 
sensitive to chelate ring conformation. Liehr’s model leads 
to an opposite prediction. Referring to Figure 10 we see 
that for a negative angle of cant Liehr’s model predicts a 
positive E(Tlg) CD band and a negative A2(T1,) CD band for 
complexes with the A configuration. On going from the 
“lel” ( 6 6 6 )  to the “ob” (XXX) structure Liehr’s model pre- 
dicts a much greater reduction in the E(Tlg) rotatory 
strength than in the A2(Tlg) rotatory strength. However, 
the “lel” and “ob” structures both give the same sign for 
the d-d rotatory strengths for all values of a! considered. 
That is, R(E) for the “lel” structure has the same sign as 
R(E) for the “ob” structure and likewise for the R(A)  
values. These results are contrary to Woldbye’s suggestion 
that the positive and negative bands observed in the CD 
spectrum of A - c ~ ( e n ) ~ ~ +  between 500 and 400 nm are 
attributable to “lel” and “ob” isomers rather than to the 
E and A trigonal components of the Alg -+ Tlg transition. 

If the ligator atoms are displaced from their octahedral 
positions and their donor orbitals are canted with respect 
to the metal-ligand internuclear axes, then the salient 
features of both Piper’s and Liehr’s models are represented. 
The results displayed in Figure 11 were calculated for CON, 
structures in which the geometry of the CON, cluster 
approximates that found in the crystal structure of 2Co- 
(en)3C13, NaC1, and 6H20,71 and the angle of cant a! was 
varied from -5 to +5”. Since the experimentally deter- 
mined C-N-Co angle in C ~ ( e n ) ~ ~ +  is very nearly tetrahedral, 
any reasonable guess at what a! should be certainly would be 
within the range 5” > a! >-5”. As was the case for the 
pure Liehr model (undisplaced ligator atoms, but 01 # O”) ,  
the change in magnitude of the R(E) value on going from 
“lel” to “ob” outweighs the corresponding change in 
magnitude of R(A) for small values of a!. Thus, on the 
model calculations presented here, an equilibrium mixture 
of “lel” and “ob” isomers cannot account for the sign and 
intensity pattern found in the CD spectrum of C~(en) ,~+ .  

The results in Figures 9-1 1 indicate the sensitivity of the 
d-d rotatory strengths to the orientation of the ligand po 
orbitals. A negative angle of cant in Liehr’s model posi- 
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tions the ligand po orbitals in the vicinity of the po orbitals 
in Piper’s model for an azimuthal contraction. Such posi- 
tioning determines the sign of the d-d rotatory strengths 
while the precise orientation determines the magnitudes. 
If it is assumed that crystal forces are responsible for the 
polar compression observed for C ~ ( e n ) ~ ~ +  in crystalline 
media and that in solution the complex is polar elongated, 
then the ratio of the calculated E and A rotatory strengths 
approaches that found in the experimental CD spectrum of 
that species. Relaxation of the polar compression should 
also result in a larger azimuthal contraction which would 
increase the magnitudes of the d-d rotatory strengths. 

The CD spectra of tris(diamine)cobalt(III) complexes 
containing substituents on the ligand “backbone” have been 
analyzed in terms of vicinal and configurational effects with 
some success. In view of the calculated sensitivity of the 
rotatory strengths to the precise orientation of the ligand 
pu orbitals such analyses should be applied with caution. 
The CD spectra of A - c ~ ( e n ) ~ ~ +  and A - C ~ ( d - p n ) ~ ~ +  are quite 
similar,’ but a marked change is observed in the CD spec- 
trum of A-C~(d-cp tn )~~+ ,  where cptn = trans-l,2-diamino- 
~ y c l o p e n t a n e . ~ ~  The bands are shifted to lower energy in 
this latter species compared to A - c ~ ( e n ) ~ ~ +  and the ratio of 
intensities of the E and A CD bands is inverted from that 
in A - c ~ ( e n ) ~ ~ + .  It is difficult to rationalize these spectral 
changes in terms of additive vicinal and configurational 
effects. On Piper’s model the solution CD spectrum of 
A - c ~ ( e n ) ~ ~ +  may be interpreted in terms of a polar elonga- 
tion and azimuthal contraction of the CoN6 cluster from 
the octahedral geometry. The addition of a methyl group 
to the carbon backbone would tend to reduce the elonga- 
tion through steric effects and thereby decrease the ratio 
of the E to A rotatory strengths. In  A - C ~ ( d - c p t n ) ~ ~ +  the 
CoN6 cluster must suffer a polar compression with a resulting 
further decrease in the ratio of the E to A CD bands. 

The “lel” isomer of A - C ~ ( d - p n ) ~ ~ ’  exhibits two CD bands 
of opposite signs in the 500-400-nm spectral region while 
the “ob” isomer of A-C0(d-pn)3~+ exhibits only one 
band?2’73 A pparently the trigonal splitting is very small 
for the “ob” isomer and the A CD band is masked by the 
E band. Additionally, the intensities of the d-d CD bands 
of C ~ ( p n ) ~ ~ +  are similar to those observed for C ~ ( e n ) ~ ~ + .  
We interpret these results to mean that the azimuthal dis- 
tortion in C ~ ( p n ) ~ ~ +  is similar to that in C ~ ( e n ) ~ ~ +  and that 
there is an increase in the polar elongation of C o ( ~ n ) ~ ~ +  on 
going from the “lel” form to the “ob” form. 

In several previous theoretical and experimental studies 
on the optical activity associated with the d-d transitions 
of six-coordinate Co(II1) complexes, it has been asserted 
that the sign of the E(Tlg) CD band can be correlated with 
the stereochemical features of the ligand structure through 
use of the octahedral sector or regional r ~ l e . ~ ~ , ~ ~  According 
to this rule, the sign of the A l  -+ E(Tlg) rotatory strength 
in trigonal dihedral complexes is gauged by the sign of the 
function F=-ZpXpY,Zp(X,2 - G2)(G2 -Z,2)(Z,2 - 
Xp2) ,  where ( X p ,  G,Z,) are the Cartesian positional coordi- 
nates of the pth ligand perturbing atom and the summation 
extends over all perturbing atoms in the ligand environ- 
ment. This rule has its basis in the one-electron theory of 
optical activity and in the crystal field model for the d-d 
excitations of transition metal complexes. If to zeroth 
order the six-coordinate metal complex is assumed to pos- 

(72) M. Ito, F. Marumo, and Y.  Saito, Inorg. Nucl. Chem. Lett., 
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6, 519 (1970). 

Lett.,  4, 351 (1968). 
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SeSS octahedral symmetry (oh), then the complex can gain 
optical activity to first order on a crystal field perturbation 
expansion only if the perturbing field transforms as a 
pseudoscalar function under the symmetry operations of 
the Oh point group ( i e . ,  the perturbation must transform 
as the Al, irreducible representation of 0,). If the crys- 
tal field potential is expanded in spherical harmonic func- 
tions about the metal ion, the first term that transforms 
as AI, is of degree nine (1 = 91, and that part of the poten- 
tial function which depends upon perturber positions is 
just the function F ,  as defined above (actually FR;", 
where R, is the metal-perturber radial distance). 

In most applications of the "octahedral sector rule," 
primary emphasis has been placed on the nonligating 
atoms of the ligand environment as perturber centers. 
However, in a recent study of chiral Co(II1) complexes 
Bosnich4' has also attempted to include distortions of the 
CoL6 cluster in a structure-spectra analysis based on the 
octahedral sector rule. In this latter application the dis- 
symmetrically disposed ligating atoms are treated as per- 
turbers and each makes a contribution to the function F. 
The theoretical validity of the octahedral sector rule, as 
well as its reliability in making spectra-structure correla- 
tions, has been discussed recently by Richardsqn4l and 
will not be further examined here. However, we did cal- 
culate F as a function of polar distortion angle 5 for 
several values of the azimuthal distortion angle 6 and found 
that the signs of F for 101 < lo", 16 1 < 10" were identical 
with the signs of the net reduced rotatory strengths calcu- 
lated for Coo6. In Figure 5 ,  F i s  plotted vs. u for 6 = 3". 
Note that although F and [R] have the same signs in this 
plot for lul< 4", the shapes of the [I?] and F curves are 
somewhat different. 

Cdeman, Gesler, Shirley, and Kuempel 

V. Summary 
Although there has been a great deal of spectra-structure 

rationalization based on Liehr's and Piper's molecular orbi- 
tal models for d-d optical activity. virtually no model calcu- 
lations have been reported in the literature. Our calcula- 
tions support the contention that trigonal dihedral transi- 
tion metal complexes gain substantial optical activity in 
the visible region by the dissymmetric positioning of the 
ligating atoms. However, we must conclude that the 
effect of the nonligating atoms need be included in some 
fashion if the relative intensities of the visible CD bands 
are to be accurately calculated and accounted for. These 
intensities are expected to be sensitive to the computational 
model for the molecular orbitals, but the signs of the bands 
appear insensitive to changes in the parameters of the MO 
model. It is this latter quality, the ability of Piper's model 
correctly to predict signs of the CD bands, that is its greatest 
strength. 

The extension of Piper's model to include ligand pn atomic 
orbitals leads to overestimates of the amount of bonding. 
It is possible that this defect may be remedied by including 
nonligating atoms bonded to the ligator atoms. That is, 
some anisotropy must be introduced into the ligand-metal 71 

system to reflect the presence of the chelate bridging atoms. 
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A cyclic voltammetric method has been used to  study the acid hydrolysis reactions Ru(NH,),X+ t H,O + Ru(NH,),- 
H,OZ' + X- , where X- is C1' and Br- . First-order rate constants, k ,  were measured in p-toluenesulfonic acid media over a 
temperature range of 15-40'. For the C1- complex, k = 6.3 i: 0.3 sec-' at 25", AH* = 12 * 3 kcal, A S *  = -16 f 6 eu; for 
the Br- complex, k = 5.4 f 0.4 sec" at 25", AH* = 14 f 3 kcal, A S *  = -10 t 6 eu. Equilibrium constants for the reac- 
tions are found to  be 0.70 M for the C1' hydrolysis and 0.92 M for the Br- hydrolysis. 

Introduction thenium(II1) pentaammine complexes. We have been at- 

ligand which is not a T acceptor are difficult to isolate in 
aqueous solution. Several workers2+ have reported that 
these complexes undergo hydrolysis reactions very quickly 
after being produced by the reduction of corresponding ru- 

Ruthenium(I1) pentaammine complexes containing a sixth tempting fast electrochemical reductions of ruthenium(II1) 
complexes of this type to produce and observe the reduced 
complexes before they react. The objectives of the work 
were to measure hydrolysis rates and stabilities of these labile 
complexes for comparison with those Of Previously studied 
d6 metal-ammine complexes. 
Experimental Section 

pared from RuC1, (Fischer Scientific) as described in the literature.' 
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